Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 12: 410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483060

RESUMO

Degenerative retinopathies are the leading causes of irreversible visual impairment in the elderly, affecting hundreds of millions of patients. Müller glia cells (MGC), the main type of glia found in the vertebrate retina, can resume proliferation in the rodent adult injured retina but contribute weakly to tissue repair when compared to zebrafish retina. However, postnatal and adult mouse MGC can be genetically reprogrammed through the expression of the transcription factor (TF) Achaete-scute homolog 1 (ASCL1) into induced neurons (iNs), displaying key hallmarks of photoreceptors, bipolar and amacrine cells, which may contribute to regenerate the damaged retina. Here, we show that the TF neurogenin 2 (NEUROG2) is also sufficient to lineage-reprogram postnatal mouse MGC into iNs. The efficiency of MGC lineage conversion by NEUROG2 is similar to that observed after expression of ASCL1 and both TFs induce the generation of functionally active iNs. Treatment of MGC cultures with EGF and FGF2 prior to Neurog2 or Ascl1 expression enhances reprogramming efficiencies, what can be at least partially explained by an increase in the frequency of MGCs expressing sex determining region Y (SRY)-box 2 (SOX2). Transduction of either Neurog2 or Ascl1 led to the upregulation of key retina neuronal genes in MGC-derived iNs, but only NEUROG2 induced a consistent increase in the expression of putative retinal ganglion cell (RGC) genes. Moreover, in vivo electroporation of Neurog2 in late progenitors from the neonatal rat retina, which are transcriptionally similar to MGCs, also induced a shift in the generation of retinal cell subtypes, favoring neuronal differentiation at the expense of MGCs and resuming the generation of RGCs. Altogether, our data indicate that NEUROG2 induces lineage conversion of postnatal rodent MGCs into RGC-like iNs in vitro and resumes the generation of this neuronal type from late progenitors of the retina in vivo.

2.
Front Immunol ; 6: 579, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635793

RESUMO

Intrathymic T-cell differentiation is a key process for the development and maintenance of cell-mediated immunity, and occurs concomitantly to highly regulated migratory events. We have proposed a multivectorial model for describing intrathymic thymocyte migration. One of the individual vectors comprises interactions mediated by laminins (LMs), a heterotrimeric protein family of the extracellular matrix. Several LMs are expressed in the thymus, being produced by microenvironmental cells, particularly thymic epithelial cells (TECs). Also, thymocytes and epithelial cells express integrin-type LM receptors. Functionally, it has been reported that the dy/dy mutant mouse (lacking the LM isoform 211) exhibits defective thymocyte differentiation. Several data show haptotactic effects of LMs upon thymocytes, as well as their adhesion on TECs; both effects being prevented by anti-LM or anti-LM receptor antibodies. Interestingly, LM synergizes with chemokines to enhance thymocyte migration, whereas classe-3 semaphorins and B ephrins, which exhibit chemorepulsive effects in the thymus, downregulate LM-mediated migratory responses of thymocytes. More recently, we showed that knocking down the ITGA6 gene (which encodes the α6 integrin chain of LM receptors) in human TECs modulates a large number of cell migration-related genes and results in changes of adhesion pattern of thymocytes onto the thymic epithelium. Overall, LM-mediated interactions can be placed at the cross-road of the multivectorial process of thymocyte migration, with a direct influence per se, as well as by modulating other molecular interactions associated with the intrathymic-trafficking events.

3.
BMC Genomics ; 14 Suppl 6: S3, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24564203

RESUMO

BACKGROUND: The thymic epithelium is the major microenvironmental component of the thymus, the primary lymphoid organ responsible for the generation of T lymphocytes. Thymic epithelial cells (TEC) control intrathymic T cell differentiation by means of distinct types of interactions. TEC constitutively produce chemokines and extracellular matrix ligands (such as laminin and fibronectin) and express corresponding receptors, which allow thymocytes to migrate in a very ordered fashion. We previously showed that laminin mediates TEC/thymocyte interactions in both mice and humans. More recently, we used RNAi technology to knock-down the ITGA5 gene (which encodes CD49e, the integrin α-chain subunit of the fibronectin receptor VLA-5) in cultured human TEC. Using a similar strategy, herein we knocked-down the ITGA6 gene, which encodes CD49f, the α-chain of two integrin-type laminin receptors, namely VLA-6 (α6ß1) and α6ß4. RESULTS: We first confirmed that RNAi-induced knock-down of the ITGA6 gene was successful, at both transcription and translational levels, with a significant decrease in the membrane expression of CD49f, apart from CD49b, CD49c and CD49d, ascertained by cytofluorometry on living TEC. We also demonstrated that such knock-down promotes a decrease in cell adhesion to laminin. Using quantitative PCR, we demonstrated that gene expression of other integrin α-chains were concomitantly down-regulated, particularly those which form other laminin receptors, including ITGA1, ITGA2 and ITGA7. Interestingly enough, LAMA1 gene expression (whose corresponding protein chain is part of laminin-111) was largely increased in ITGA6 knocked-down TEC cultures. Lastly, the network complexity of gene expression under ITGA6 influence is much broader, since we found that other cell migration-related genes, namely those coding for various chemokines, are also modulated when IGTA6 is knocked-down. CONCLUSION: The data presented herein clearly show that down regulation of ITGA6 gene in the human thymic epithelium triggers a complex cascade of effects upon the expression levels of several other cell migration-related genes, including extracellular matrix and chemokine ligands and receptors. Taken together, these data unravel the concept that the expression of genes involved in controlling of thymocyte migration by the thymic microenvironment should be regarded as complex networks, so that a defect in the expression of one single gene may reflect in an amplified cascade with functional consequences for TEC adhesion onto the natural ligand and potential consequences upon the normal patterns of TEC/thymocyte interactions.


Assuntos
Movimento Celular/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Integrina alfa6/genética , Interferência de RNA , Timo/citologia , Adesão Celular/genética , Linhagem Celular , Regulação para Baixo/genética , Epitélio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Redes Reguladoras de Genes , Humanos , Lactente , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...